Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
The Korean Journal of Laboratory Medicine ; : 230-238, 2008.
Article in English | WPRIM | ID: wpr-206226

ABSTRACT

BACKGROUND: Mac-2 binding protein (Mac-2BP) is a secreted glycoprotein from the culture fluid of several human cancer cells, especially breast, lung, and gastric cells. Mac-2BP plays a role in immune response and cell adhesion activity in patients with various cancer and infectious diseases. In this study, we attempted to identify the regulators of Mac-2BP expression at the transcriptional level. METHODS: To determine the effect of epidermal growth factor (EGF) to Mac-2BP expression in gastric cancers, we constructed the different lengths of Mac-2BP promoter plasmids and measured the promoter activity and Mac-2BP expression. In addition to investigating the role of signal transducer and activator of transcription3 (STAT3) or human telomerase reverse transcriptase (hTERT) as a regulator of Mac-2BP, we transfected the small interfering RNA (siRNA) specific for STAT3 or hTERT, and Mac-2BP level was observed by a quantitative ELISA. RESULTS: EGF treatment could suppress the Mac-2BP transcription in HEK293 or gastric cancer cell lines (SNU-638 or AGS). In 5'-deleted promoter experiment, pGL3-Mac Pro-2377 transfected cells showed a decreased luciferase activity compared to pGL3-Mac Pro-2277. We also identified that (-2,366/-2,356) on Mac-2BP promoter is a putative STAT3 binding site and suppression of STAT3 with STAT3 specific siRNA increased the Mac-2BP level, suggesting the role of STAT3 as a negative regulator, in contrast to hTERT, which is known as a positive regulator. CONCLUSIONS: EGF signal is critical for the Mac-2BP expression, and more importantly, STAT3 could work as a negative regulator, while hTERT as a positive regulator in Mac-2BP transcription.


Subject(s)
Humans , Antigens, Neoplasm/genetics , Cell Line , Cell Line, Tumor , Down-Regulation , Epidermal Growth Factor/metabolism , Membrane Glycoproteins/genetics , RNA, Small Interfering , STAT3 Transcription Factor/genetics , Telomerase/metabolism , Transfection
2.
The Korean Journal of Laboratory Medicine ; : 430-437, 2008.
Article in English | WPRIM | ID: wpr-97400

ABSTRACT

BACKGROUND: Human telomerase reverse transcriptase (hTERT) is a catalytic enzyme that is required for telomerase activity (TA) and cancer progression. Telomerase inhibition or inactivation increases cellular sensitivity to UV irradiation, DNA-damaging agents, the tyrosine kinase inhibitor, imatinib, and pharmacological inhibitors, such as BIBR1532. hTERT is associated with apoptosis. Some patients show drug-resistance during anti-cancer drug treatment and the cancer cell acquire anti-apoptotic mechanism. Therefore, we attempted to study correlation between hTERT and drug-resistance. METHODS: To study the correlation between protein level and activity of hTERT and drug-resistance, Western blotting and telomerase repeat amplification protocol (TRAP) assays were performed. To investigate whether hTERT contributes to drug resistance in tumor cells, we transiently decreased hTERT levels using small interfering RNA (siRNA) in T24/R2 cells. RESULTS: hTERT knockdown increased Bax translocation into the mitochondria and cytochrome C release into the cytosol. Caspase inhibitors, especially Z-VAD-FMK, rescued this phenomenon, suggesting that the stability or expression of hTERT might be regulated by caspase activity. CONCLUSIONS: These data suggest that hTERT might be a target molecule for drug-resistant tumor therapy.


Subject(s)
Humans , Amino Acid Chloromethyl Ketones/pharmacology , Antineoplastic Agents/pharmacology , Caspases/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Cytochrome c Group/metabolism , Drug Resistance, Neoplasm/genetics , Neoplasms/therapy , RNA, Small Interfering , Telomerase/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism
3.
Experimental & Molecular Medicine ; : 705-714, 2007.
Article in English | WPRIM | ID: wpr-21108

ABSTRACT

Although N-myc downstream regulated gene 2 (NDRG2) has been known to be a tumor suppressor gene, the function of this gene has not been elucidated. In the present study, we investigated the expression and function of NDRG2 in human gastric cancer. Among seven gastric cancer and two non-cancer cell lines, only two gastric cancer cell lines, SNU-16 and SNU-620, expressed NDRG2, which was detected in the cytoplasm. Interestingly, NDRG2 was highly expressed in normal gastric tissues, but gastric cancer patients were divided into NDRG2-positive and -negative groups. The survival rate of NDRG2-negative patients was lower than that of NDRG2-positive patients. We confirmed that the loss of NDRG2 expression was a significant and independent prognostic indicator in gastric carcinomas by multivariate analysis. To investigate the role of NDRG2 in gastric cancer cells, we generated a NDRG2-silenced gastric cancer cell line, which stably expresses NDRG2 siRNA. NDRG2-silenced SNU-620 cells exhibited slightly increased proliferation and cisplatin resistance. In addition, inhibition of NDRG2 decreased Fas expression and Fas-mediated cell death. Taken together, these data suggest that inactivation of NDRG2 may elicit resistance against anticancer drug and Fas-mediated cell death. Furthermore, case studies of gastric cancer patients indicate that NDRG2 expression may be involved in tumor progression and overall survival of the patients.


Subject(s)
Humans , Apoptosis/physiology , Cell Line, Tumor , Down-Regulation , Fas Ligand Protein/physiology , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Tumor Suppressor Proteins/biosynthesis
4.
The Korean Journal of Laboratory Medicine ; : 287-293, 2006.
Article in English | WPRIM | ID: wpr-67549

ABSTRACT

BACKGROUND: Human telomerase is a ribonucleoprotein polymerase, which synthesizes telomeric repeat sequences, and human telomerase reverse transcriptase (hTERT) has been identified as the catalytic subunit, as well as the rate-limiting component, of telomerase. In this study, we attempted to identify the modulators of telomerase, and to determine the molecular mechanisms underlying cisplatin-induced apoptosis. METHODS: To determine the role of telomerase in cisplatin-induced apoptosis, we measured telomerase activity and analyzed apoptosis using PI and trypan blue staining. Also, we inhibited the caspase activations using Z-VAD-fmk to analyze the effects on expression of hTERT protein. Finally, we induced the transient co-expression of the Bcl-2 and Bak genes in HEK293 cells, and then, the telomerase activity and expression of hTERT were evaluated. RESULTS: In the Bcl-2-overexpressing HeLa cells, telomerase activity was more enhanced, and cell death was reduced to 40-50% that of the mock controls. This finding suggests that Bcl-2-induced telomerase activity exerts an antiapoptotic effect in cisplatin-induced death. As caspase activation was inhibited via Z-VAD-fmk, the hTERT protein was recovered in the mock controls, but not in the Bcl-2-overexpressing cells. This suggests that the expression of hTERT can be regulated by caspases, but Bcl-2 was located within the upstream pathway. Moreover, when the Bcl-2 and Bak genes were co-transfected into the HEK293, both telomerase activity and hTERT protein were prominently reduced. CONCLUSIONS: Bcl-2-induced telomerase activity inhibits cisplatin-induced apoptosis in HeLa cells, and can be regulated via both caspases and the interaction of Bcl-2 and Bak.


Subject(s)
Humans , Apoptosis , Caspases , Catalytic Domain , Cell Death , Cisplatin , HEK293 Cells , HeLa Cells , Ribonucleoproteins , Telomerase , Trypan Blue
5.
The Korean Journal of Laboratory Medicine ; : 192-198, 2005.
Article in English | WPRIM | ID: wpr-214443

ABSTRACT

BACKGROUND: Bcl-2 family proteins play a central role in regulating apoptosis. In human, over 20 members of this family have been identified to date. Bfl-1, a member of the Bcl-2 family, has been known to retard apoptosis in various cell lines. However, the function of Bfl-1 remains unclear. METHODS: In order to investigate the Bfl-1 function, we employed yeast two-hybrid system to identify the proteins which are capable of interacting with Bfl-1. The interaction of inhibitor kappaB kinase-beta (IKK-beta) and Bfl-1 was confirmed using glutathione S-transferase pull down assays. To determine which regions of IKK-beta were required for interaction with Bfl-1, we constructed 12 deletion mutants of IKK-beta and 5 deletion mutants of Bfl-1. RESULTS: Bfl-1 interacted with the C-terminal region of IKK-beta which is a subunit of IKK complex, and IKK-beta activity is very important in the NF-kappaB related pathway. In addition, the amino acids 673-745 of IKK-beta were important for Bfl-1 interactions, and amino acids 1-484 of Bfl-1, including Bcl-2 homology domains (BH1, BH2, BH3, BH4), were crucial for IKK-beta interactions. CONCLUSIONS: IKK beta C-terminus contains many serine residues as binding partner of Bfl-1. Our results suggested that Bfl-1 is involved in the NF-kappaB activation through interaction of IKK-beta and Bfl-1. Further studies need to be performed to understand functions of the IKK-beta and Bfl-1 associated with the regulation of the NF-kappaB activation pathway.


Subject(s)
Humans , Amino Acids , Apoptosis , Cell Line , Glutathione Transferase , I-kappa B Kinase , NF-kappa B , Serine , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL